Permutation inference for the general linear model
نویسندگان
چکیده
منابع مشابه
Permutation inference for the general linear model
Permutation methods can provide exact control of false positives and allow the use of non-standard statistics, making only weak assumptions about the data. With the availability of fast and inexpensive computing, their main limitation would be some lack of flexibility to work with arbitrary experimental designs. In this paper we report on results on approximate permutation methods that are more...
متن کاملThe General Linear Model
The general linear model (glm) provides a general framework for a large set of models whose common goal is to explain or predict a quantitative dependent variable by a set of independent variables which can be categorical of quantitative. The glm encompasses techniques such as Student’s t test, simple and multiple linear regression, analysis of variance, and covariance analysis. The glm is adeq...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولInference for Distributions over the Permutation Group
Permutations are ubiquitous in many real-world problems, such as voting, ranking, and data association. Representing uncertainty over permutations is challenging, since there are n! possibilities, and typical compact and factorized probability distribution representations, such as graphical models, cannot capture the mutual exclusivity Constraints associated with permutations. In this paper, we...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: NeuroImage
سال: 2014
ISSN: 1053-8119
DOI: 10.1016/j.neuroimage.2014.01.060